

Programa Analítico de Disciplina

TAL 478 - Modelagem e Simulação de Processos na Indústria deAlimentos

Departamento de Tecnologia de Alimentos - Centro de Ciências Exatas e Tecnológicas

Catálogo: 2019

Número de créditos: 4 Carga horária semestral: 60h Carga horária semanal teórica: 2h Carga horária semanal prática: 2h

Semestres: I

Objetivos

- Desenvolver no aluno a capacidade de elaborar modelos teóricos, numéricos e empíricos a partir das operações unitárias mais utilizadas na indústria de alimentos.
- Propor modelos matemáticos para os processos industriais.
- Apresentar ferramentas computacionais para a resolução de modelos numéricos, teóricos e empíricos.
- Analisar e simular problemas da Engenharia de Alimentos.

Ementa

Introdução à modelagem matemática de processos na indústria de alimentos. Modelagem empírica e fenomenológica. Desenvolvimentos de modelos matemáticos: balanços de massa, energia e quantidade em movimento. Métodos numéricos aplicados à simulação de processos. Resolução de problemas compostos por equações algébricas lineares e não lineares. Comportamento dinâmico de sistemas de primeira ordem. Comportamento dinâmico de sistemas de segunda ordem. Resolução de problemas compostos por equações diferenciais. Simulação de processos na indústria de alimentos. Introdução a pacotes computacionais de simulação de processos.

Pré e co-requisitos
TAL 472

Oferecimentos obrigatórios			
Curso	Período		
Engenharia de Alimentos	7		

Oferecimentos optativos	
Não definidos	

A autenticidade deste documento pode ser conferida no site https://siadoc.ufv.br/validar-documento com o código: 84AH.7SM6.A7VM

TAL 478 - Modelagem e Simulação de Processos na Indústria deAlimentos

Conteúdo						
Jnidade	Т	Р	ED	Pj	То	
1.Introdução à modelagem matemática de processos na indústria de alimentos	2h	0h	0h	0h	2h	
2. Modelagem empírica	6h	4h	2h	0h	12h	
 Modelagem fenomenológica. Desenvolvimentos de modelos matemáticos: balanços de massa, energia e quantidade em movimento 	4h	0h	2h	0h	6h	
4. Métodos numéricos aplicados à simulação de processos	2h	2h	0h	0h	4h	
5.Resolução de problemas compostos por equações algébricas lineares e não lineares	4h	4h	0h	0h	8h	
6. Comportamento dinâmico de sistemas de primeira ordem	2h	2h	0h	0h	4h	
7. Comportamento dinâmico de sistemas de segunda ordem	4h	2h	0h	0h	6h	
8. Resolução de problemas compostos por equações diferenciais		4h	0h	0h	8h	
9. Simulação de processos na indústria de alimentos	2h	0h	0h	0h	2h	
10.Introdução a pacotes computacionais de simulação de processos		4h	0h	4h	8h	
Total	30h	22h	4h	4h	60h	

(T)Teórica; (P)Prática; (ED)Estudo Dirigido; (Pj)Projeto; Total(To)

Planejamento pedagógico				
Carga horária	Itens			
Teórica	Apresentação de conteúdo oral e escrito com o apoio de equipamento (projetor, quadro-digital, TV, outros); Apresentação de conteúdo oral e escrito em quadro convencional; Apresentação de conteúdo utilizando aprendizado ativo; e Seminários			
Prática	Prática executada por todos os estudantes e Resolução de problemas			
Estudo Dirigido	Estudo dirigido e Resolução de problemas			
Projeto	Desenvolvimento de projeto			
Recursos auxiliares	Não definidos			

TAL 478 - Modelagem e Simulação de Processos na Indústria deAlimentos

Bibliografias básicas		
Descrição		
SEBORG, D. E. Process dynamics and control. 3rd ed. Hoboken, New Jersey [Estados Unidos]: Wiley, 2011 xiv, 514 p.	2	
STEPHANOPOULOS, G. Chemical process control - an introduction to theory and practice. Prentice-Hall, 1984.	1	
BEQUETTE, B.W. Process dynamics- modeling, analysis and simulation. Upper Saddle River: Prentice Hall, 2003. Disponível on line: https://eleccompengineering.files.wordpress.com/2015/10/process-dynamics_modeling_analysis_and_simulation_wayne_bequette.pdf	0	
BOYCE, W. E.; DIPRIMA, R. C. Equações diferenciais elementares e problemas de valores de contorno. 10. ed. Rio de Janeiro: LTC, 2015. xii, 663 p.	15	
PERLINGEIRO, Carlos Augusto G. Engenharia de processos: análise, simulação, otimização e síntese de processos químicos. São Paulo: E. Blucher, 2005. x, 198 p.	3	

Bibliografias complementares			
Descrição			
ALTMANN, W. Practical process control for engineers and techniciais. Newnes, 2005.	0		
LUYBEN, W. L. Chemical reactor design control. Wiley Interscience, 2007.	0		
LUYBEN, W. L. Process modeling, simulation and control for chemical engineers. McGraw-Hill, 1989.	0		
OGUNNAIKE, B. A.; RAY, W. H. Process dynamis, modeling, and control (Topic in Chemical Engineering). Oxford University Press, 1994.	0		
BROCKMAN, J. B. Introdução à Engenharia - Modelagem e simulação de problemas. 1ª ed. Rio de Janeiro: LTC, 2010.	0		
FARID, M. M. Mathematical Modeling of Food Processing. CRC Press, 2010.	0		
OGATA, K. Engenharia de controle moderno. 5 ed. ; 4 reimpr. São Paulo: Pearson Prentice Hall, 2013. 809 p.	4		
WU, H. K. Resolvendo problemas de Engenharia Química com o software livre Scilab. São Carlos: EdUFSCAR, 2016. 667 p.	0		
BIRD, R. B.; STEWART, W. E.; LIGHTFOOT, E. N. Fenômenos de transporte. 2. ed. Rio de Janeiro: LTC, c2004. xv, 838 p.	8		
KREYSZIG, E. Advanced engineering mathematics. 7.ed. New York: J. Wiley, 1993.	1		